Non-canonical CRP sites control competence regulons in Escherichia coli and many other γ-proteobacteria

نویسندگان

  • Andrew D. S. Cameron
  • Rosemary J. Redfield
چکیده

Escherichia coli's cAMP receptor protein (CRP), the archetypal bacterial transcription factor, regulates over a hundred promoters by binding 22 bp symmetrical sites with the consensus core half-site TGTGA. However, Haemophilus influenzae has two types of CRP sites, one like E.coli's and one with the core sequence TGCGA that regulates genes required for DNA uptake (natural competence). Only the latter 'CRP-S' sites require both CRP and the coregulator Sxy for activation. To our knowledge, the TGTGA and TGCGA motifs are the first example of one transcription factor having two distinct binding-site motifs. Here we show that CRP-S promoters are widespread in the gamma-proteobacteria and demonstrate their Sxy-dependence in E.coli. Orthologs of most H.influenzae CRP-S-regulated genes are ubiquitous in the five best-studied gamma-proteobacteria families, Enterobacteriaceae, Pasteurellaceae, Pseudomonadaceae, Vibrionaceae and Xanthomonadaceae. Phylogenetic footprinting identified CRP-S sites in the promoter regions of the Enterobacteriaceae, Pasteurellaceae and Vibrionaceae orthologs, and canonical CRP sites in orthologs of genes known to be Sxy-independent in H.influenzae. Bandshift experiments confirmed that E.coli CRP-S sequences are low affinity binding sites for CRP, and mRNA analysis showed that they require CRP, cAMP (CRP's allosteric effector) and Sxy for gene induction. This work suggests not only that the gamma-proteobacteria share a common DNA uptake mechanism, but also that, in the three best studied families, their competence regulons share both CRP-S specificity and Sxy dependence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-canonical CRP sites control competence regulons in Escherichia coli and many other g-proteobacteria

Escherichia coli’s cAMP receptor protein (CRP), the archetypal bacterial transcription factor, regulates over a hundred promoters by binding 22 bp symmetrical sites with the consensus core half-site TGTGA. However, Haemophilus influenzae has two types of CRP sites, one like E.coli’s and one with the core sequence TGCGA that regulates genes required for DNA uptake (natural competence). Only the ...

متن کامل

Comparative genomics and evolution of transcriptional regulons in Proteobacteria

Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target ...

متن کامل

Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria.

The comparative approach to the recognition of transcription regulatory sites is based on the assumption that as long as a regulator is conserved in several genomes, one can expect that sets of co-regulated genes (regulons) and regulatory sites for the regulator in these genomes are conserved as well. We used this approach to analyze the ribose (RbsR), arabinose (AraC), and xylose (XylR) regulo...

متن کامل

Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gamma-proteobacteria.

Comparative approach is a powerful tool for analysis of gene regulation in bacterial genomes. Here we apply it to analysis of regulation of the multidrug resistance transport (MDRT) systems in enterobacteria Escherichia coli, Salmonella typhi, Klebsiella pneumoniae and Yersinia pestis. Comparison of nucleotide sequences upstream of MDRT genes was performed in order to predict new regulatory sit...

متن کامل

Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.

The Escherichia coli cyclic AMP receptor protein (CRP) is a global regulator that controls transcription initiation from more than 100 promoters by binding to a specific DNA sequence within cognate promoters. Many genes in the CRP regulon have been predicted simply based on the presence of DNA-binding sites within gene promoters. In this study, we have exploited a newly developed technique, run...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006